M203 20260117 Exponents and Logarithms

1. Exponential Function Basics

2b) Find $t$ if $\LARGE 3^{27^t} = 27^{3^t}$

$\LARGE a^{b^c}$ cannot be simplified

2a) Find $x$ if $\LARGE 5^{x^2-3} = 25^x$

2c) Find all values of y such that $4^y – 12*2^y =-32$

2. Logarithms Basics

1) Find the domain and range of $f(x) = \log_2 x$. Graph $y = \log_2 x$ and $y = \log_{1/2} x$.

2 ) Solving the inequalities:

$\log_4 (2x-3) > 2$

$\log_{1/5} x > 3$

Note

- increasing function preserves sign of inequality

- decreasing function flips sign of inequality

4 ) Let $x = \log_4 128$, Find $4^x$, $2^x$, Find $x$.

38:43

3b )Find the domain of $f(x) = \log_{1/2} \bigl( \log_5 (\log_{1/3} x) \bigr)$.

3a ) Find the domain of $g(x) = \log_{1/2} (\log_3 x)$.

Find the range of $g(x) = \log_{1/2} (\log_3 x)$.

Find the range of $f(x) = \log_{1/2} \bigl( \log_5 (\log_{1/3} x) \bigr)$.

Note

Change of base can solve 99% of logarithm problems

5)Evaluate each of the following:

$\log_{16} 8$,

$\log_{3/2} \frac{4}{9}$,

$\log_{3\sqrt{3}} 243$

3. Logarithmic Identities

2 ) Evaluate:

4 ) Find all values of $x$:

$2 \log_3 (x+4) - \log_3 (4x-11) = 2$

Caution

Once you find a solution, you actually need to go back and check to make sure your solutions are not extraneous.

For $\log_3 (x+4)$, we need $x+4 > 0 \implies \mathbf{x > -4}$

For $\log_3 (4x-11)$, we need $4x-11 > 0 \implies \mathbf{x > 2.75}$

5 ) Find all ordered pairs of real numbers $(x, y)$ that satisfy the system of equations:

$\log_{10} \left( \dfrac{x^3}{y^4} \right) = 5$

$\log_{10} \left( x^2 \times y^5 \right) = 11$

14 ) Suppose that $p$ and $q$ are positive numbers for which $\log_9 p = \log_{12} q = \log_{16} (p+q)$.

What is the value of $\dfrac{q}{p}$?

18 ) Find all $x$ such that $\LARGE x^{\log_{10} x} = \dfrac{x^3}{100}$

22 ) What is the value of the expression $\dfrac{1}{\log_2 100!} + \dfrac{1}{\log_3 100!} + \dots + \dfrac{1}{\log_{100} 100!}$?